Via Physorg.com -
In an effort to find an answer to the problem of identifying smuggled special nuclear material (SNM), researchers at Sandia National Laboratories in California say a neutron scatter camera they are developing may be able to detect radiation from much greater distances and through more shielding than current detection instruments.
The neutron scatter camera, says Sandia physicist Nick Mascarenhas, has the capability to count neutrons from a source of SNM and localize it — meaning it doesn’t only indicate there is radiation present, but also where it is emanating from and, under some circumstances, how much.
“This instrument can pinpoint a hot spot in another room through walls, something not typically possible with gamma-ray detectors,” says Mascarenhas. “Performance-wise, it’s beating the older technologies, but we want to continue to push the limits of sensitivity and detection distance.”
Distance, says Mascarenhas, is a significant benchmark because it means the neutron scatter camera has the potential to detect through various types of shielding, a concern at any border crossing or point of entry.
Results of neutron scatter camera testing have been encouraging. “It’s more penetrating and can detect unambiguously at a greater distance and through more shielding,” says Jim Lund, who manages the Rad/Nuc Detection Systems group at Sandia/California.
Since 9/11, radiation detection has taken on a new immediacy as a means of preventing a nuclear weapon attack within the United States. Gamma-ray and neutron detectors are being deployed at border crossings and ports, with the goal of enabling interdiction of a nuclear weapon or material before it enters the country.
No comments:
Post a Comment